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Multivariate morphometry statistics reveal the morphological 
change pattern of hippocampus during normal aging
Hong Chaia, Jianhua Sunb, Peng Zhoua and Lingyu Zhangc;  
for the Alzheimer’s Disease Neuroimaging Initiative (ADNI)*  

There have been numerous studies focusing on normal 
aging in previous decades which is accompanied by the 
structural and functional decline in the hippocampus, 
while the pattern of hippocampal alteration with 
age remains unclear. Figuring out the mechanism of 
hippocampal changes precisely is beneficial for a better 
understanding of the aging process. In this study, we 
included a total of 451 T1 MRI scans of subjects of age 
50–90 who were labeled as normal in the Alzheimer’s 
Disease Neuroimaging Initiative. Taking 10 years of age 
as an age band, we divided the subjects into four groups 
(denoted as HC1, HC2, HC3, and HC4, respectively), with 
the youngest being 50–60 and the oldest 81–90. Then 
the Multivariate Morphometry Statistics (MMS) of the 
hippocampus segmented from the four groups were 
extracted by surface reconstruction, mesh generation, 
and surface registration. Finally, the significant differences 
between the youngest group and the other three were 
statistically analyzed. Results showed that the earliest 
deformation region of the left hippocampus located 
in the frontal subiculum and the dorsal CA1 of the tail 
part and gradually expanded with aging, while the right 
hippocampal deformation mainly concentrated in the 
dorsal CA1 and spread to the posterior CA2-3, which 

occurred later than that of the left. All the results illustrated 
that the hippocampus is truly a vulnerable structure in the 
course of aging, and the MMS are sensitive metrics for 
detecting the changes in the subcortical convex structure. 
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Introduction
Increasing age is expected to raise the high risk of age-re-
lated diseases such as Alzheimer’s disease, and elderly 
individuals are susceptible to suffer cognitive decline. 
During the process of aging, the hippocampus has under-
gone drastic changes [1], and its lesions have been widely 
considered the defining pathology of cognitive decline 
[2]. Actually, the aging process is characterized by com-
plexity and heterogeneity and involves a wide range 
of neuropathological bases. Although there is already a 
multitude of studies that have investigated the role of 
the hippocampus in aging, most of which focused on 
the conventional indicators such as the volume or area 
of the whole hippocampus [3], which are not sensitive 
enough to the subcortical nuclei so that it is difficult to 
detect the subtle local deformation. Therefore, the pre-
cise mechanism of the morphological alteration pattern 
is still unknown.

Some scholars have investigated the hippocam-
pal changes in the aging process using voxel-based 

morphometry (VBM), which is more detailed and can 
detect local abnormality of the gray matter in the case 
of accurate registration to a certain extent, and resulted 
in promising results [4]. However, due to the existence 
of the artifacts, the positive results often need to be 
verified again. Previous studies have demonstrated that 
surface-based morphometry (SBM) exhibits a powerful 
ability to probe the alteration associated with advanc-
ing aging [5], but just like the VBM method mentioned 
above, it also relies on accurate registration. To solve this 
problem, a novel registration framework was introduced 
in this study, which can obtain accurate registration with-
out the need for precise surface normal.

In this article, three SBM indicators, including the 
radial distance (RD), surface tensor-based morphometry 
(TBM), and the surface multi-variate TBM (mTBM), 
were extracted from 451 T1 MRI scans of healthy elderly 
by surface conformal parameterization, conformal pres-
entation, and fluid registration. RD and mTBM were 
combined into a vector called multivariate morphometry 
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statistics (MMS) given the confirmed potent statistical 
performance in our previous work [6]. All of these indica-
tors were analyzed statistically to identify the areas with 
significant differences between the youngest group and 
the older ones. After calculation, we depicted the precise 
hippocampal alteration pattern of atrophy or expansion 
of the 15 000 surface vertices during the aging process. A 
brief workflow of this study is illustrated in Fig. 1.

Methods
Participants
All the 451 T1 MRI scans used in this study were obtained 
from the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) database (https://adni.loni.usc.edu/) launched 
in 2003, which was led by Principal Investigator Michael 
W. Weiner, MD with testing whether serial MRI, PET, 
other biological markers, and clinical assessment can be 
combined to quantify the progression of Alzheimer’s dis-
ease. In this study, the criteria for the normal older adults 
included Mini-mental State Examination score within 
the range 24–30, a clinical dementia rating score of 0 with 
the Memory Box score being 0, and age greater than 50. 
Taking 10 years of age as an age band, we divided the 
subjects into four groups HC1 (24 subjects of age 50–60), 
HC2 (187 subjects of age 61–70), HC3 (179 subjects of 

age 71–80), and HC4 (61 subjects of age 81–90). Detailed 
demographical and clinical information of subjects are 
summarized in Table 1.

Data processing and feature extraction
First, the hippocampus was defined anatomically using 
FSLs subcortical segmentation protocol (FIRST). 
Second, the surface models were built using the topolo-
gy-preserving level set method [7], on which the triangu-
lar surface meshes were constructed using the marching 
cube algorithm [8], as shown in Fig. 1(d). Surfaces that 
failed to model were removed during a strict manual 
visual inspection step. For more suitable surfaces to gen-
erate the conformal grids, the surfaces were smoothed, 
which included mesh simplification [9] and mesh refine-
ment [10] following our previous studies [11]. Then, 
the conformal grids were computed with the holomor-
phic 1-form basis on the Euclidean domain [12], based 
on which the surface geometric features were obtained 
using surface conformal representation. Finally, a fluid 
registration method [13] was used to register surfaces 
to a common template to obtain 15 000 indexed vertices 
on each surface, so that we obtained the one-to-one cor-
respondence between the single surface and template, 
which allows us to analyze the morphological changes 

Fig. 1

The overall workflow developed in this study. (a) T1 MRI; (b) hippocampus segmented from (a); (c) the constructed 3D surface; (d) the gener-
ated meshes representing the one-to-one correspondence; (e) areas with significant differences; (f) areas with atrophy or expansion. mTBM, the 
surface multivariate TBM; RD, radial distance; TBM, determinant of the Jacobian matrix.
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precisely. The detailed introduction of the conformal 
representation was as follows: conformal mapping is also 
called conformal mapping. Conformal mapping at a point 
means that the angle and direction of the intersection 
curve after mapping remain at this point. Here, conformal 
mapping keeps the inner angle of the triangular patch 
of the reconstructed hippocampal surface unchanged 
before and after mapping.

Given S be a surface inR 3, and {(Uα,zα)} is the atlas of S, 
where Uα refers to the open set of S and zα is the map-
ping from the open set Uα to the complex plane C. The 
differential 1-form of the local parameter (xα,yα) on the 
coordinate chart (Uα,zα) which introduces conformal 
parameters between the surface patch and the image 
plane is defined as follows:

ω = f (xα, yα)dxα + g(xα, yα)dyα          
(1)

where f and g are smooth functions, and the conjugate 
differential 1-form is formulated as [14]:

∗ω = −g(xα, yα)dxα + f (xα, yα)dyα              
(2)

Then, the holomorphic 1-form is as follows:

τ = ω +
√
−1∗ω          (3)

And the conformal parameterization φ of the point p on 
the surface S is defined as:

φ( p) =
´
γ

τ          (4)

where γ is an arbitrary path of p to a fixed point on the sur-
face. Apparently,φ is a function from S to the Euclidean 
planeR 2.

It can be easily proved by Gauss and Codazzi equation 
that the only surface S in R 3can be determined by the 
conformal factor and average curvature. Therefore, it is 

called ‘conformal representation of surface’, in which the 
conformal factor of a vertex p is:

          λ( p) = Area [ Bε( p) ]
Area { φ [ Bε( p) ] } # (5)

where Bε( p) is an open ball with p as center and Ɛ as 
radius, based on which the average curvature is defined 
as:

H = 1
2λ sign(φ) |� φ|          

(6)

where sign(φ) = <�φ,�N>
|�φ| , and �N  is the surface normal. 

That is, the surface normal is only needed to calculate 
sign(φ) with a value of −11 or 1, so that accurate mean 
curvature can be achieved even when the surface normal 
are imprecise.

Statistical analysis
The features adopted in this study include RD (the radial 
distance from a vertex to the central axis), TBM (reflects 
the tangential alteration) [15], mTBM (3 × 1 vector, the 
supplement and reinforcement of TBM) [16] and MMS 
(4 × 1 vector, combined with RD and mTBM, which has 
been demonstrated powerful ability to probe the altera-
tion) [17].

To determine the areas with significant differences 
between HC1 and the other three groups, the t test was 
used to analyze RD and TBM and the Hotelling’s T2 
test was used for mTBM and MMS. And a vertex-based 
permutation test and a whole hippocampus-based per-
mutation test were performed for multiple comparisons 
[6].

T value was calculated on each vertex of each surface 
of the two groups to represent the difference between 
groups based on real labels, then the surfaces of the 
two groups were mixed and randomly divided into two 
groups, and the t value was recalculated as t′. At each ver-
tex, the ratio of t′ value greater than t value to the total 
permutation number (10 000) was taken as the p value, 
and p = 0.05 was taken as the threshold to establish the 
surface significance p-map (uncorrected).

Table 1 Demographic information of subjects

Variables HC1 HC2 HC3 HC4 

p value

HC1 vs. HC2 HC1 vs. HC3 HC1 vs. HC4 

Sample size 24 187 179 61 – – –
Age (means ± SD) 57.88 ± 1.650 66.87 ± 2.372 74.55 ± 2.783 83.80 ± 2.337 – – –
Sex (male/female) 8/16 57/130 70/109 36/25 0.816a 0.66a 0.053a

MMSE (means ± SD) 29.42 ± 0.717 29.16 ± 1.055 29.01 ± 1.173 28.93 ± 1.365 0.25b 0.096b 0.105b

CDR (Memory Box) 0 (0) 0 (0) 0 (0) 0 (0) – – –

HC1, subjects of age 50–60; HC2, subjects of age 61–70; HC3, subjects of age 71–80; HC4, subjects of age 81–90.
CDR, the clinical dementia rating score; MMSE, Mini-mental State Examination score.
aChi-square test.
bTwo-sample T test.
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The feature of the p-map was defined as the number 
of p values less than the threshold (0.05), which was 
used as the real effect. Then the features of the real 
and random groups are compared and the ratio of the 
features of the latter greater than or equal to the real 
effect is the probability that the observed real effect 
is ‘accidental’, so that the ratio was considered to be 
the global significance of the whole surface after mul-
tiple comparison correction (corrected for multiple 
comparisons).

Then we compared the mean RD and TBM at every ver-
tex with p value less than 0.05 of HC2, HC3, and HC4 
with HC1, respectively, as follows, to determine whether 
the tissue at this vertex has atrophied or expanded:




1
n1

n1∑
i=1

Xi
1 − 1

n2

n2∑
i=1

Xi
2 > 0 p < 0.05 : atrophy

1
n1

n1∑
i=1

Xi
1 − 1

n2

n2∑
i=1

Xi
2 < 0 p < 0.05 : expasion

where n
1
 and n

2
 represent the subjects number of HC1 

and another group compared (HC2, HC3, or HC4) and 
X

1
 and X

2
 represent the value of RD or TBM of HC1 and 

the compared group (same as above).

Results
As shown in the p-map of RD depicted in Fig. 2, the 
area of the earliest radial deformation of the left hip-
pocampus was located in the frontal subiculum and pos-
terior CA1 of the tail part and both the significance and 
area increased gradually, while the tangential changes 
surrounded the tail then spread to head with age. As 
for the right hippocampus, the radial deformation was 
distributed in dorsal CA1 and ventral CA2-3, and even-
tually spread to a small area of ventral subiculum, while 
the tangential deformation was concentrated in dorsal 
CA1 of the tail according to the p-map of TBM and 
mTBM.

After calculation, it was determined that the radial defor-
mation of both the left and right hippocampus was atro-
phy. And the tail of the left hippocampus and the whole 
right hippocampus showed atrophy too, while the dorsal 
CA1 on the head of the left hippocampus expanded, as 
shown in Fig. 3.

When comparing HC1 with HC2, only the p values of RD 
and TBM in the left hippocampus reached a significant 
level, and the p values of mTBM, MMS, and all statistics 
of the right hippocampus were greater than 0.05. In com-
parison with HC1 and HC3, the p values of all statistics 
of the left hippocampus were less than 0.05, and only p 
value of RD of the right hippocampus reached a signifi-
cant level. When the ages of the experimental group were 
over 81, the p values of all the indexes of the left and right 
hippocampus were far less than 0.05.

Discussion
Although we enrolled the elderly with normal cognition, 
there were significant changes in the hippocampus of 
the elderly, which were mainly concentrated in dorsal 
CA1 and the subiculum, in their 60s, 70s, and 80s com-
pared with those in their 50s. As one of the regions most 
affected by the age-related disease, the CA1 subregion 
of the hippocampus is widely believed to be highly cor-
related with cognitive process, and the deformation of 
which may lead to the decline of working memory, spatial 
memory, and decision-making functions [18]. And there 
has been evidence of the relevance of the subiculum to 
memory retrieval and verbal memory [19], which might 
be another potential neuropathological basis for related 
memory deficits in the elderly. As for the direction of 
deformation, as shown in Fig. 3, the radial deformation of 
both the left and right hippocampus was atrophy, the tail 
of the left hippocampus and the whole right hippocam-
pus showed atrophy too, and only the dorsal CA1 on the 
head of the left hippocampus expanded, which is consist-
ent with what most classic studies have reported [20], and 
from a neuropathological point of view, it is associated 
with neuron loss and tangles [21].

In line with the previous study, these areas are not the 
same as the deformed areas caused by Mild Cognitive 
Impairment (MCI) or Alzheimer’s disease [22,23], indi-
cating that the process of normal aging is different from 
the pathological pathway of MCI or Alzheimer’s disease, 
which is why MCI or Alzheimer’s disease cannot be sim-
ply understood as the accelerated normal aging process. 
This conclusion also demonstrated one of the advan-
tages of the method we introduced, that is, the refined 
features we extracted can probe the local changes. Even 
though some global p values are NS in Table  2, the p 
values after permutation test on some vertices reached 
a significant level, and these subtle changes cannot be 
detected by a method based on the overall volume of 
the hippocampus.

In addition, the left-right asymmetry attracted attention. 
Specifically, the p values of the left hippocampus were 
lower than that of the right one in all three comparisons. 
Especially in the comparison of HC1 and HC2 groups, 
the p values of RD and TBM in the left hippocampus 
reached a significant level while the global significance 
of all the four indicators of the right hippocampus was 
greater than the threshold of 0.05. It can be seen from 
Table 2 that the p values of the left hippocampus were all 
one order of magnitude larger than that of the right hip-
pocampus. Combined with Fig. 2, the area of inter-group 
significance region of the left hippocampus was also 
larger, that is, the deformation of the left one occurred 
earlier and the affected area is larger than the right hip-
pocampus, which has been suggested that this may partly 
be due to the deformation of the right one is mainly inter-
nal [18], while one view is that the left-right asymmetry 
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Fig. 2

The p-map of surfaces.

Fig. 3

Areas with atrophy and expansion.

Table 2 The global p values of HC1 and HC2, HC1 and HC3, as well as HC1 and HC4

  

HC1 vs. HC2 HC1 vs. HC3 HC1 vs. HC4

L R L R L R 

TBM 0.0299 0.2609 0.0043 0.052 <0.0001 0.0001
RD 0.0254 0.223 0.0012 0.0466 <0.0001 0.0012
mTBM 0.0893 0.6521 0.0094 0.216 <0.0001 0.0154
MMS 0.0906 0.5498 0.0039 0.0912 <0.0001 0.0043

L, the left hippocampus; R, the right hippocampus; p values in bold, statistical results less than 0.05.
mTBM, the surface multivariate TBM; MMS, Multivariate Morphometry Statistics; RD, radial distance; TBM, determinant of the Jacobian matrix.
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underlies the human cognitive by facilitates the forma-
tion of specialized modules in the brain [24,25].

There remain some additional limitations. First, due to 
the consideration of preciseness, the clinical scores of 
subjects were strictly required, which resulted in the rela-
tively small number of HC1 group. Second, our algorithm 
only aims at the subcortical convex structures, and how to 
apply its idea to the cortex remains to be further studied. 
Finally, whether there is a causal relationship between 
these sub-regions is also the focus of our future research.
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